Theoretical Study of the Phenoxy Radical Recombination with the O(3P) Atom, Phenyl plus Molecular Oxygen Revisited.

2021 
Quantum chemical calculations of the C6H5O2 potential energy surface (PES) were carried out to study the mechanism of the phenoxy + O(3P) and phenyl + O2 reactions. CASPT2(15e,13o)/CBS//CASSCF(15e,13o)/DZP multireference calculations were utilized to map out the minimum energy path for the entrance channels of the phenoxy + O(3P) reaction. Stationary points on the C6H5O2 PES were explored at the CCSD(T)-F12/cc-pVTZ-f12//B3LYP/6-311++G** level for the species with a single-reference character of the wave function and at the CASPT2(15e,13o)/CBS//B3LYP/6-311++G** level of theory for the species with a multireference character of the wave function. Conventional, variational, and variable reaction coordinate transition-state theories were employed in Rice-Ramsperger-Kassel-Marcus master equation calculations to assess temperature- and pressure-dependent phenomenological rate constants and product branching ratios. The main bimolecular product channels of the phenoxy + O(3P) reaction are concluded to be para/ortho-benzoquinone + H, 2,4-cyclopentadienone + HCO and, at high temperatures, also phenyl + O2. The main bimolecular product channels of the phenyl + O2 reaction include 2,4-cyclopentadienone + HCO at lower temperatures and phenoxy + O(3P) at higher temperatures. For both the phenoxy + O(3P) and phenyl + O2 reactions, the collisional stabilization of peroxybenzene at low temperatures and high pressures competes with the bimolecular product channels.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    1
    Citations
    NaN
    KQI
    []