Upscale Impact of Mesoscale Convective Systems and Its Parameterization in an Idealized GCM for an MJO Analog above the Equator

2019 
AbstractThe Madden-Julian oscillation (MJO) typically contains several superclusters and numerous embedded mesoscale convective systems (MCSs). It is hypothesized here that the poorly simulated MJOs in current coarse resolution global climate models (GCMs) is related to the inadequate treatment of unresolved MCSs. So its parameterization should provide the missing collective effects of MCSs. However, a satisfactory understanding of the upscale impact of MCSs on the MJO is still lacking. A simple two-dimensional multicloud model is used as an idealized GCM with clear deficiencies. Eddy transfer of momentum and temperature by the MCSs, predicted by the mesoscale equatorial synoptic dynamics (MESD) model, is added to this idealized GCM. The upscale impact of westward-moving MCSs promotes eastward propagation of the MJO analog, consistent with the theoretical prediction of the MESD model. Furthermore, the upscale impact of upshear-moving MCSs significantly intensifies the westerly wind burst, due to two-way f...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    77
    References
    7
    Citations
    NaN
    KQI
    []