Dynamic Formation and Breaking of Disulfide Bonds in Molecular Dynamics Simulations with the UNRES Force Field

2007 
Many proteins contain disulfide bonds that are usually essential for maintaining function and a stable structure. Several algorithms attempt to predict the arrangement of disulfide bonds in the context of protein structure prediction, but none can simulate the entire process of oxidative folding, including dynamic formation and breaking of disulfide bonds. In this work, a potential function developed to model disulfide bonds is coupled with the united-residue (UNRES) force field, and used in both canonical and replica exchange molecular dynamics simulations to produce complete oxidative folding pathways. The potential function is obtained by introducing a transition barrier that separates the bonded and nonbonded states of the half-cystine residues. Tests on several helical proteins show that improved predictions are obtained when dynamic disulfide-bond formation and breaking are considered. The effect of the disulfide bonds on the folding kinetics is also investigated, particularly their role in stabiliz...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    35
    Citations
    NaN
    KQI
    []