Neuronal subset-specific deletion of Pten results in aberrant Wnt signaling and memory impairments

2018 
Abstract The canonical Wnt and PI3K/Akt/mTOR pathways both play critical roles in brain development early in life. There is extensive evidence of how each pathway is involved in neuronal and synaptic maturation, however, how these molecular networks interact requires further investigation. The present study examines the effect of neuronal subset-specific deletion of phosphatase and tensin homolog ( Pten ) in mice on Wnt signaling protein levels and associated cognitive impairments. PTEN functions as a negative regulator of the PI3K/Akt/mTOR pathway, and mutations in Pten can result in cognitive and behavioral impairments. We found that deletion of Pten resulted in elevated Dvl2, Wnt5a/b, and Naked2, along with decreased GSK3β hippocampal synaptosome protein expression compared to wild type mice. Aberrations in the canonical Wnt pathway were associated with learning and memory deficits in Pten knockout mice, specifically in novel object recognition and the Lashley maze. This study demonstrates that deletion of Pten not only significantly impacts PI3K/Akt/mTOR signaling, but affects proper functioning of the Wnt signaling pathway. Overall, these findings will help elucidate how the PI3K/Akt/mTOR pathway intersects with Wnt signaling to result in cognitive impairments, specifically in memory.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    4
    Citations
    NaN
    KQI
    []