Consequences of altered eicosanoid patterns for nociceptive processing in mPGES-1-deficient mice

2008 
Cyclooxygenase-2 (COX-2)-dependent prostaglandin (PG) E2 synthesis in the spinal cord plays a major role in the development of inflammatory hyperalgesia and allodynia. Microsomal PGE2 synthase-1 (mPGES-1) isomerizes COX-2-derived PGH2 to PGE2. Here, we evaluated the effect of mPGES-1-deficiency on the noci-ceptive behavior in various models of nociception that depend on PGE2 synthesis. Surprisingly, in the COX-2-dependent zymosan-evoked hyperalgesia model, the nociceptive behavior was not reduced in mPGES-1-deficient mice despite a marked decrease of the spinal PGE2 synthesis. Similarly, the nociceptive behavior was unaltered in mPGES-1-deficient mice in the formalin test. Importantly, spinal cords and primary spinal cord cells derived from mPGES-1-deficient mice showed a redirection of the PGE2 synthesis to PGD2, PGF2α and 6-keto-PGF1α (stable metabolite of PGI2). Since the latter prostaglandins serve also as mediators of noci-ception they may compensate the loss of PGE2 synthesis in mPGES-1-deficient mice.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    25
    Citations
    NaN
    KQI
    []