Impact of Scaling on Physical Unclonable Function based on Spin-Orbit Torque

2020 
We analyze the scalability of a spin–orbit torque random access memory (SOT-MRAM)-based physical unclonable function (PUF) at the nanoscale size by means of a hybrid CMOS/spintronics simulation framework. The properties of the SOT-MRAM device (diameters from 100 nm down to 25 nm) are computed via micromagnetic simulations, whereas their implications for PUF applications are evaluated at the circuit level in terms of energy characteristics and security metrics. Obtained results prove that the implementation of 2 b xor operations in the designed PUF circuit achieves randomness and uniqueness very close to the ideality.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    0
    Citations
    NaN
    KQI
    []