A Portable 3-D Imaging FMCW MIMO Radar Demonstrator With a $24\times 24$ Antenna Array for Medium-Range Applications

2018 
Multiple-input multiple-output (MIMO) radars have been shown to improve target detection for surveillance applications thanks to their proven high-performance properties. In this paper, the design, implementation, and results of a complete 3-D imaging frequency-modulated continuous-wave MIMO radar demonstrator are presented. The radar sensor working frequency range spans between 16 and 17 GHz, and the proposed solution is based on a 24-transmitter and 24-receiver MIMO radar architecture, implemented by time-division multiplexing of the transmit signals. A modular approach based on conventional low-cost printed circuit boards is used for the transmit and receive systems. Using digital beamforming algorithms and radar processing techniques on the received signals, a high-resolution 3-D sensing of the range, azimuth, and elevation can be calculated. With the current antenna configuration, an angular resolution of 2.9° can be reached. Furthermore, by taking advantage of the 1-GHz bandwidth of the system, a range resolution of 0.5 m is achieved. The radio-frequency front-end, digital system and radar signal processing units are here presented. The medium-range surveillance potential and the high-resolution capabilities of the MIMO radar are proved with results in the form of radar images captured from the field measurements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    19
    Citations
    NaN
    KQI
    []