Fast Maximum Torque per Ampere (MTPA) Angle Detection for Interior PMSMs using Online Polynomial Curve Fitting

2021 
For interior permanent magnet synchronous machines (IPMSMs), maximum torque per ampere (MTPA) control aims to find the MTPA angle to maximize the control objective (the ratio of output torque to stator current). This article proposes a novel online polynomial curve fitting technique for fast and accurate MTPA angle detection, which is motivated by the fact that the objective increases before MTPA angle and decreases after MTPA angle. This article proposes a polynomial-based objective model and identifies the polynomial parameters from a few test data for direct MTPA angle calculation. The proposed approach can avoid the time-consuming search process resulting in fast detection speed in comparison to existing search-based methods. In implementation, the current angle is set to a few test values to obtain the data for online curve fitting and MTPA angle calculation, in which there is no need of machine inductances and PM flux linkage. Moreover, the proposed polynomial model is analyzed to obtain the number of test data required for fast and accurate MTPA angle detection. The proposed approach is validated with extensive experiments and comparisons with existing methods on a laboratory IPMSM.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    0
    Citations
    NaN
    KQI
    []