Understanding the source of dielectric loss in Titania/polypropylene nanocomposites up to 220 GHz

2017 
Nanocomposites are a promising new dielectric material for on-chip and chip-to-chip waveguides that operate at millimeter (mm)-wave frequencies because of their higher relative permittivity compared to neat polymers and their compatibility with printed circuit board processing. For dielectric waveguides, extremely low loss is critical; thus, understanding the origins of loss is an important step for these applications. In this paper, we investigate the sources of loss in TiO 2 /polypropylene (PP) nanocomposites, in which polypropylene-graft-maleic anhydride (PP-g-MA) is added as a compatibilizer. Compared to nanocomposites made without PP-g-MA, we find that PP-g-MA improves the distribution of nanoparticles in the PP matrix and significantly lowers loss. We also examine the contribution to dielectric loss from PP-g-MA by measuring samples that contain no TiO 2 nanoparticles, and find that while increasing the amount of PP-g- MA in PP results in a higher loss, it is small compared to the loss that comes from the addition of TiO 2 nanoparticles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    1
    Citations
    NaN
    KQI
    []