Determinants of crystal structure transformation of ionic nanocrystals in cation exchange reactions

2021 
Changes in the crystal system of an ionic nanocrystal during a cation exchange reaction are unusual yet remain to be systematically investigated. In this study, chemical synthesis and computational modeling demonstrated that the height of hexagonal-prism roxbyite (Cu1.8S) nanocrystals with a distorted hexagonal close-packed sulfide anion (S2−) sublattice determines the final crystal phase of the cation-exchanged products with Co2+ [wurtzite cobalt sulfide (CoS) with hexagonal close-packed S2– and/or cobalt pentlandite (Co9S8) with cubic close-packed S2–]. Thermodynamic instability of exposed planes drives reconstruction of anion frameworks under mild reaction conditions. Other incoming cations (Mn2+, Zn2+, and Ni2+) modulate crystal structure transformation during cation exchange reactions by various means, such as volume, thermodynamic stability, and coordination environment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    1
    Citations
    NaN
    KQI
    []