A straightforward one-pot synthesis of Pd–Ag supported on activated carbon as a robust catalyst toward ethanol electrooxidation

2021 
Abstract Direct Ethanol Fuel Cells (DEFCs) have fascinated remarkable attention on account of their high current density and being environmentally friendly. Developing efficient and durable catalysts with a simple and fast method is a great challenge in the practical applications of DEFCs. To this end, the bimetallic Pd–Ag with adjustable Pd:Ag ratios were synthesized via a simple and one-pot strategy on activated carbon as a support in this study. The Pd–Ag/C catalysts with different molar ratios were synthesized by simultaneous reduction of Pd and Ag ions in the presence of the ethanolic sodium hydroxide as a green reducing agent for the first time. Several different methods, including FE-SEM, HR-TEM, XRD, XPS EDX, ICP-OES, and BET were used to confirm the structure and morphology of the catalysts. The performance of catalysts was also examined in ethanol oxidation. Obtained results of electrochemical experiments revealed that the Pd3–Ag1/C catalyst had superior catalytic activity (2911.98 mAmg−1Pd), durability, and long-stability compared to the other catalysts. The excellent catalytic characteristic can be attributed to the synergistic effect between Pd and Ag. We presume that our simple method have the chance to be utilized as a proper method for the synthesis of fuel cell catalysts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    3
    Citations
    NaN
    KQI
    []