Speciation, controlling steps and pathways of silver release from the sludge generated from coagulation of wastewater spiked with silver nanoparticles.

2021 
Abstract Sludge generated in wastewater treatment facilities is an integral part for the introduction of silver nanoparticles (AgNPs) to the terrestrial environment, which would cause some adverse ecosystem responses. The understanding of silver release process from the sludge is important to evaluate their risks. In this study, the amount and speciation of the released silver were investigated by taking the sludge generated by wastewater coagulation with AgNPs added (denoted as sludgeC-AgNPs) an example, and kinetic analysis and density functional theory (DFT) calculations were first used to explore the controlling steps and pathways about the silver release. The results showed that sludgeC-AgNPs could release the dissolved silver and the colloidal silver. Beside Cl−, Ca2+ in the leaching solution could enhance the silver release of sludgeC-AgNPs, especially for the colloidal silver. The released colloidal silver restricted in size from 40 nm to 100 nm with irregular shape. Although the oxidative dissolution of Ag0 was the origin of the silver release pathways from the sludgeC-AgNPs, the silver diffusion was the controlling step due to the spontaneous binding between silver and the hydrolysates of polyaluminium chloride in sludgeC-AgNPs. However, Ca2+ in the leaching solution could occupy the binding site of silver on sludgeC-AgNPs, which would increase the diffusion rate of silver over the oxidative rate of Ag0. With this condition, the controlling step of silver release from sludgeC-AgNPs turned to the oxidative dissolution of Ag0. Our findings are important to assess the fate of AgNPs in wastewater treatment as well as sludge applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    0
    Citations
    NaN
    KQI
    []