The simulation of dendritic growth in Ni-Cu alloy using the phase field model

2009 
Purpose: The aim of this work was to develop a computer program for simulation of dendritic growth in a selected alloy using the phase field model. This model becomes very popular for modelling a variety of technological processes at the mesoscale level. Design/methodology/approach: In the phase field model a new variable, the phase field variable is introduced, which defines the physical state of the system (liquid or solid) at each point and the governing differential equations system. The main advantage of this method is to avoid interphase tracking in contrast to the conventional method with sharp interface. Findings: In this work an algorithm for calculation of the microstructural evolution formed during dendritic solidification is presented by application of a numerical finite difference method for solving partial differential equations. Research limitations/implications: The presented model for dendritic solidification will be extended for modelling of phase transformations in the solid state during technological processes in metallurgy. The calculation still has to be verified using experimental methods of microstructure analysis. Practical implications: The phase field method becomes very popular for modelling of variety of technological processes at the mesoscale. In the actual work the methodology for simulation of microstructural development during solidification is presented.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    6
    Citations
    NaN
    KQI
    []