Triphenylamine-based trinuclear Pt(II) complexes for solution-processed OLEDs displaying efficient pure yellow and red emissions

2021 
Abstract Highly efficient phosphors are critical in solution-processed organic light-emitting devices (OLEDs). Multinuclear Ir(III) complexes containing more than one metal center have showed great potential in fabricating high performance OLEDs, yet the electroluminescent (EL) properties of multinuclear Pt(II) complexes are rarely studied. In this work, two neutral trinuclear Pt(II) complexes are synthesized based on the triphenylamine core bearing three bidentate ligand arms. Both the yellow emitter (PyTPt) and deep-red emitter (IqTPt) exhibit improved photoluminescent quantum yields (PLQYs) compared with their corresponding mononuclear Pt(II) complexes. Furthermore, the PLQYs of PyTPt and IqTPt doped films are increased to 0.63 and 0.47, respectively. The solution-processed pure yellow-emitting device based on PyTPt achieves impressively high external quantum efficiency (EQE), current efficiency (CE), and power efficiency (PE) of 16.92%, 56.74 cd/A and 29.09 lm W−1, respectively, which are among the best performance reported for the OLEDs employing multinuclear Pt(II) complexes. The solution-processed device based on IqTPt shows pure red emission with the peak EQE approaching 9.0%. Both PyTPt and IqTPt display much higher EL efficiencies than their corresponding mononuclear Pt(II) complexes. This work demonstrates that it is an attritive strategy to develop multinuclear Pt(II) complexes for high-performance OLEDs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    3
    Citations
    NaN
    KQI
    []