Activation of endogenous GABAA channels on airway smooth muscle potentiates isoproterenol-mediated relaxation

2008 
Reactive airway disease predisposes patients to episodes of acute smooth muscle mediated bronchoconstriction. We have for the first time recently demonstrated the expression and function of endogenous ionotropic GABAA channels on airway smooth muscle cells. We questioned whether endogenous GABAA channels on airway smooth muscle could augment β-agonist-mediated relaxation. Guinea pig tracheal rings or human bronchial airway smooth muscles were equilibrated in organ baths with continuous digital tension recordings. After pretreatment with or without the selective GABAA antagonist gabazine (100 μM), airway muscle was contracted with acetylcholine or β-ala neurokinin A, followed by relaxation induced by cumulatively increasing concentrations of isoproterenol (1 nM to 1 μM) in the absence or presence of the selective GABAA agonist muscimol (10–100 μM). In separate experiments, guinea pig tracheal rings were pretreated with the large conductance KCa channel blocker iberiotoxin (100 nM) after an EC50 contraction with acetylcholine but before cumulatively increasing concentrations of isoproterenol (1 nM to 1 uM) in the absence or presence of muscimol (100 uM). GABAA activation potentiated the relaxant effects of isoproterenol after an acetylcholine or tachykinin-induced contraction in guinea pig tracheal rings or an acetylcholine-induced contraction in human endobronchial smooth muscle. This muscimol-induced potentiation of relaxation was abolished by gabazine pretreatment but persisted after blockade of the maxi KCa channel. Selective activation of endogenous GABAA receptors significantly augments β-agonist-mediated relaxation of guinea pig and human airway smooth muscle, which may have important therapeutic implications for patients in severe bronchospasm.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    28
    Citations
    NaN
    KQI
    []