Application of Monte Carlo Simulation Technique to Design Flood Estimation: A Case Study for North Johnstone River in Queensland, Australia

2013 
The traditional rainfall-runoff modelling based on the Design Event Approach has some serious limitations as this ignores the probabilistic nature of the key flood producing variables in the modelling except for rainfall depth. A more holistic approach of design flood estimation such as the Joint Probability Approach/Monte Carlo simulation can overcome some of the limitations associated with the Design Event Approach. The Monte Carlo simulation technique is based on the principle that flood producing variables are random variables instead of fixed values. This allows accounting for the inherent variability in the flood producing variables in the rainfall-runoff modelling. This paper applies the Monte Carlo simulation technique and hydrologic model URBS to a large catchment with multiple pluviograph and stream gauging stations. It has been found that it is quite feasible to apply the Monte Carlo simulation technique to large catchments. The Monte Carlo simulation technique has much greater flexibility than the Design Event approach and can provide more realistic design flood estimates with multiple scenarios, which is likely to replace the Design Event Approach. The method developed here can be applied to other catchments in Australia and other countries.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    33
    Citations
    NaN
    KQI
    []