A simulation-based study on the effect of package parameters on the random vibration behavior of electronic packages

2021 
Ball grid array (BGA) technology has been commonly used in electronic structures due to their mechanical and electrical advantages. BGA packages are available in different sizes and array configurations. This paper presents a simulation-based examination to compare and investigate the effect of package design parameters on the mechanical behavior of electronic assemblies under random vibrations. In addition to package size, the main focus of this work is to investigate the effect of the array type, i.e., full vs. perimeter, on solder stresses because in literature, there is a lack of data on the reliability comparison between packages with full and peripheral solder arrays. Nonlinear finite element simulations were carried out to model all package configurations and to execute the analysis. Simulations results showed that, generally, the matrix, i.e., array, type does not have a significant effect on solder stress distributions and values. In contrast, smaller packages undergo lower solder stresses and different distributions. Finally, the results of this paper recommend the use of smaller packages with peripheral solder arrays for most reliable and cost-effective designs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    0
    Citations
    NaN
    KQI
    []