Modulation of E2F Complexes during G0 to S Phase Transition in Human Primary B-lymphocytes

1999 
Abstract The pocket protein-E2F complexes are convergence points for cell cycle signaling. In the present report, we identified and monitored the pocket protein-E2F complexes in human primary B-lymphocytes after activation by phorbol 12-myristate 13-acetate. Consistent with previous data from human and mouse fibroblasts and T-lymphocytes, E2F4 and DP1 form the predominant E2F heterodimers both in G0 and G1 phases of the human B-lymphocyte cell cycle, whereas E2F1 and -3 are first detected in late G1, and their expression levels increase towards S phase. Intriguingly, the major E2F complex that we detected in quiescent human B-lymphocytes is consisted of pRB, E2F4, and DP1. Though the levels of DP1 and -2 increase when cells progress from G0 to S, the proportion of DP1 to DP2 remains relatively constant during the cell cycle. We also observed an increase in electrophoretic mobility of the predominant E2F components, DP1 and E2F4, as B-lymphocytes progressed from G0 into early G1. This increase in mobility was attributable to dephosphorylation, as λ phosphatase treatment could convert the slower migrating forms into the corresponding faster mobility forms. We further demonstrated that this change in phosphorylation status correlates with a decrease in DNA binding activity. This modulation of DNA binding activity mediated through the dephosphorylation of DP1 and E2F4 could help to explain the lack of in vivo DNA footprinting in late G1 and S phases of gene promoters negatively regulated through E2F sites and suggests a novel mechanism for controlling E2F transcriptional activity during the transition from quiescence to proliferation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    23
    Citations
    NaN
    KQI
    []