Cardioprotective responses to aerobic exercise-induced physiological hypertrophy in zebrafish heart.

2021 
Herein, we aimed to establish an aerobic exercise-induced physiological myocardial hypertrophy zebrafish (Danio rerio) model and to explore the underlying molecular mechanism. After 4 weeks of aerobic exercise, the AMR and Ucrit of the zebrafish increased and the hearts were enlarged, with thickened myocardium, an increased number of myofilament attachment points in the Z-line, and increased compaction of mitochondrial cristae. We also found that the mTOR signaling pathway, angiogenesis, mitochondrial fusion, and fission event, and mitochondrial autophagy were associated with the adaptive changes in the heart during training. In addition, the increased mRNA expression of genes related to fatty acid oxidation and antioxidation suggested that the switch of energy metabolism and the maintenance of mitochondrial homeostasis induced cardiac physiological changes. Therefore, the zebrafish heart physiological hypertrophy model constructed in this study can be helpful in investigating the cardioprotective mechanisms in response to aerobic exercise.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    0
    Citations
    NaN
    KQI
    []