A TROPOMI- and GLM-Based Estimate of NOx Production by Lightning over the U.S.

2019 
Lightning produces NO because the extreme temperatures (>20000 K) in lightning channels dissociate molecular O2 and molecular N2, which then combine to form NOx which quickly reacts with O3 to form NO2. Lightning is responsible for 10-15% of NOx emissions globally. This is 2 – 8 Tg N a-1 [Schumann and Huntrieser, 2007] or 100 to 400 mol per flash. Much of the uncertainty stems from limited knowledge of lightning NOx production per flash (LNOx PE) or per unit flash length. Most LNOx is injected into mid- and upper-troposphere where away from deep convection its lifetime is longer relative to lower troposphere NOx. NOx in this region enhances the concentrations of upper tropospheric NOy, OH, and O3 and contributes to positive radiative forcing by O3 and negative forcing by CH4. We have previously used OMI NO2 to obtain estimates of LNOx production per flash over the Gulf of Mexico (Pickering et al., 2016, JGR), in convective events during NASA’s TC4 field program (Bucsela et al., 2010, JGR), and over broad regions of the tropics (Allen et al., 2019, JGR) and midlatitudes (Bucsela et al., 2019, JGR). In the latter studies, we obtained PE values of 170 ± 100 mol flash and 180 ± 100 mol flash, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []