Automated detection and staging of malaria parasites from cytological smears using convolutional neural networks

2021 
Microscopic examination of blood smears remains the gold standard for diagnosis and laboratory studies with malaria. Inspection of smears is, however, a tedious manual process dependent on trained microscopists with results varying in accuracy between individuals, given the heterogeneity of parasite cell form and disagreement on nomenclature. To address this, we sought to develop an automated image analysis method that improves accuracy and standardisation of cytological smear inspection but retains the capacity for expert confirmation and archiving of images. Here we present a machine-learning method that achieves red blood cell (RBC) detection, differentiation between infected and uninfected RBCs and parasite life stage categorisation from raw, unprocessed heterogeneous images of thin blood films. The method uses a pre-trained Faster Region-Based Convolutional Neural Networks (R-CNN) model for RBC detection that performs accurately, with an average precision of 0.99 at an intersection-over-union threshold of 0.5. A residual neural network (ResNet)-50 model applied to detect infection in segmented RBCs also performs accurately, with an area under the receiver operating characteristic curve of 0.98. Lastly, using a regression model our method successfully recapitulates intra-erythrocytic developmental cycle (IDC) stages with accurate categorisation (ring, trophozoite, schizont), as well as differentiating asexual stages from gametocytes. To accelerate the utility of our method, we have developed a mobile-friendly web-based interface, PlasmoCount, which is capable of automated detection and staging of malaria parasites from uploaded heterogeneous input images of Giemsa-stained thin blood smears. Results gained using either laboratory or phone-based images permit rapid navigation through and review of results for quality assurance. By standardising the assessment of parasite development from microscopic blood smears, PlasmoCount markedly improves user consistency and reproducibility and thereby presents a realistic route to automating the gold standard of field-based malaria diagnosis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    1
    Citations
    NaN
    KQI
    []