Rapid Folding of Calcium-Free Subtilisin by a Stabilized Pro-Domain Mutant†

1999 
In vitro folding of mature subtilisin is extremely slow. The isolated pro-domain greatly accelerates in vitro folding of subtilisin in a bimolecular reaction whose product is a tight complex between folded subtilisin and folded pro-domain. In our studies of subtilisin, we are trying to answer two basic questions:  why does subtilisin fold slowly without the pro-domain and what does the pro-domain do to accelerate the folding rate? To address these general questions, we are trying to characterize all the rate constants governing individual steps in the bimolecular folding reaction of pro-domain with subtilisin. Here, we report the results of a series of in vitro folding experiments using an engineered pro-domain mutant which is independently stable (proR9) and two calcium-free subtilisin mutants. The bimolecular folding reaction of subtilisin and proR9 occurs in two steps:  an initial binding of proR9 to unfolded subtilisin, followed by isomerization of the initial complex into the native complex. The cent...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    26
    Citations
    NaN
    KQI
    []