dCas9 binding inhibits the initiation of base excision repair in vitro

2022 
Abstract Cas9 targets DNA during genome editing by forming an RNA:DNA heteroduplex (R-loop) between the Cas9-bound guide RNA and the targeted DNA strand. We have recently demonstrated that R-loop formation by catalytically inactive Cas9 (dCas9) is inherently mutagenic, in part, by promoting spontaneous cytosine deamination within the non-targeted single-stranded DNA of the dCas9-induced R-loop. However, the extent to which dCas9 binding and R-loop formation affect the subsequent repair of uracil lesions or other damaged DNA bases is unclear. Here, we show that DNA binding by dCas9 inhibits initiation of base excision repair (BER) for uracil lesions in vitro. Our data indicate that cleavage of uracil lesions by Uracil-DNA glycosylase (UDG) is generally inhibited at dCas9-bound DNA, in both the dCas9:sgRNA-bound target strand (TS) or the single-stranded non-target strand (NT). However, cleavage of a uracil lesion within the base editor window of the NT strand was less inhibited than at other locations, indicating that this site is more permissive to UDG activity. Furthermore, our data suggest that dCas9 binding to PAM sites can inhibit UDG activity. However, this non-specific inhibition can be relieved with the addition of an sgRNA lacking sequence complementarity to the DNA substrate. Moreover, we show that dCas9 binding also inhibits human single-strand selective monofunctional uracil-DNA glycosylase (SMUG1). Structural analysis of a Cas9-bound target site subsequently suggests a molecular mechanism for BER inhibition. Taken together, our results imply that dCas9 (or Cas9) binding may promote background mutagenesis by inhibiting the removal of DNA base lesions by BER.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    0
    Citations
    NaN
    KQI
    []