Experimental and Theoretical Studies of the Factors Affecting the Cycloplatination of the Chiral Ferrocenylaldimine (SC)-[(η5-C5H5)Fe{(η5-C5H4)–C(H)=N–CH(Me)(C6H5)}]

2014 
The study of the reactivity of the enantiopure ferrocenyl Schiff base (SC)-[FcCH=N–CH(Me)(C6H5)] (1) (Fc = (η5-C5H5)Fe(η5-C5H4)) with cis-[PtCl2(dmso)2] under different experimental conditions is reported. Four different types of chiral Pt(II) have been isolated and characterized. One of them is the enantiomerically pure trans-(SC)-[Pt{κ1-N[FcCH=N–CH(Me)(C6H5)]}Cl2(dmso)] (2a) in which the imine acts as a neutral N-donor ligand; while the other three are the cycloplatinated complexes: [Pt{κ2-C,N [(C6H4)–N=CHFc]}Cl(dmso)] (7a) and the two diastereomers {(Sp,SC) and (Rp,SC)} of [Pt{κ2-C,N[(η5-C5H3)–CH=N–{CH(Me)(C6H5)}]Fe(η5-C5H5)}Cl(dmso)] (8a and 9a, respectively). Isomers 7a-9a, differ in the nature of the metallated carbon atom [CPh (in 7a) or CFc (in 8a and 9a)] or the planar chirality of the 1,2-disubstituted ferrocenyl unit (8a and 9a). Reactions of 7a–9a with PPh3 gave [Pt{κ2-C,N[(C6H4)–N=CHFc]}Cl(PPh3)] (in 7b) and the diastereomers (Sp,SC) and (Rp,SC) of [Pt{κ2-C,N[(η5-C5H3)–CH=N–{CH(Me)(C6H5)}] Fe(η5-C5H5)}Cl(PPh3)] (8b and 9b, respectively). Comparative studies of the electrochemical properties and cytotoxic activities on MCF7 and MDA-MB231 breast cancer cell lines of 2a and cycloplatinated complexes 7b-9b are also reported. Theoretical studies based on DFT calculations have also been carried out in order to rationalize the results obtained from the cycloplatination of 1, the stability of the Pt(II) complexes and their electrochemical properties.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    77
    References
    8
    Citations
    NaN
    KQI
    []