Two-component feedstock based on ultra-high molecular weight polyethylene for additive manufacturing of medical products

2021 
Abstract Ultra-high molecular weight polyethylene (UHMWPE) possesses distinctive properties, but has an extremely low melt flow rate (MFR) of about zero, which makes it unsuitable for processing by standard methods for polymers. The aim of this paper was to investigate the tribological properties of two-component UHMWPE-based composites with different content of isotactic PP. The composites were fabricated by three methods: a) hot pressing of the powder mixtures; b) hot compression of granules; and c) 3D printing (FDM). It was shown that the UHMWPE-based composites obtained by extrusion compounding (hot compression of granules and 3D printing) in terms of the mechanical and tribological properties (wear resistance, the friction coefficient, Young's modulus, and yield strength) were superior to the ones manufactured by hot pressing of the powder mixtures. The most effective was the ‘UHMWPE+20% PP’ composite in terms of maintaining high tribological and mechanical properties and the necessary melt flow rate (MFR) in a wide range of loads. It was recommended as a feedstock for additive manufacturing of complex-shaped products (joint components) for friction units in orthopedics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    0
    Citations
    NaN
    KQI
    []