language-icon Old Web
English
Sign In

High performance fuel cell

2010 
There is considerable recent interest in forming nano-materials with enhanced or unique properties and there has already been a great deal of interest in applying nanotechnology to improve fuel cell performance. Researchers have shown that the power output of fuel cells can be enhanced by using carbon nanotubes as catalyst supports. This paper aims to combine the advantages high resolution lithography to achieve high structure resolution over a large surface area for fuel cell electrodes. Technique to develop a high surface area electrode is to use anodization of selected metals to produce oxide nanotubes as a template. Titanium has been used as a substrate to grow Ti-oxide nanotubes in 0.5 wt% HF electrolytes, resulting in a well ordered structure to control the flow of reactant to the membrane. We used nanolithography techniques to assist and control the growth of the oxide tubes. TiO 2 nanotubes of diameter 60–75 nm and length of 220–250nm were formed. Finally we incorporated the optimized catalyst/electrode design into a prototype fuel cell using a commercial Nafion membrane and evaluated its performance. Prototype miniature fuel cell showed maximum current density approximately as high as 130mA/cm 2 and open circuit voltage of 0.75V.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    0
    Citations
    NaN
    KQI
    []