From spin induced ferroelectricity to spin and dipolar glass in a triangular lattice: The CuCr{sub 1−x}V{sub x}O{sub 2} (0≤x≤0.5) delafossite

2013 
The change from antiferromagnetism induced ferroelectricity to spin glass ferroelectric relaxor has been studied along the CuCr{sub 1−x}V{sub x}O{sub 2} (0≤x≤0.5) solid solution of polycrystalline samples. As x increases from CuCrO{sub 2} (x=0) to CuCr{sub 0.82}V{sub 0.18}O{sub 2}, it is found that the Neel temperature decreases from ∼24 K down to ∼13 K. This progressive weakening of the antiferromagnetism of CuCrO{sub 2} induces a rapid decrease of the spin induced ferroelectricity with polarization values going from ∼44 μC/m{sup 2} down to ∼1.5 μC/m{sup 2} for x=0.04 and x=0.08, respectively. Beyond x=0.18 (0.20≤x≤0.50), ac-magnetic susceptibility and magnetization measurements evidence a spin glass state while dielectric permittivity and polarization measurements point towards a relaxor behaviour. This shows that competing magnetic interactions in delafossites are an efficient way to transform a spin induced magnetoelectric into a multiglass (spin and dipolar) state. - Graphical abstract: The P(T) curves evidencing the aging effect on polarization in CuCr{sub 0.5}V{sub 0.5}O{sub 2}: E=135 kV/m is applied during cooling at different temperatures. The P values and the inflection point of the transition depend on the poling temperature suggesting a relaxor behaviour. This effect related to the spin glass state is not observed for the lowest vanadium content. -more » Highlights: • Samples of the CuCr{sub 1−x}V{sub x}O{sub 2} series have been studied. • The V content increase induces a change from antiferromagnetism to spin glass. • A behavior characterisitic of a spin and dipole glass is demonstrated. • The ferroelectricity is shown to go from spin induced to relaxor. • Competing magnetic interactions are efficient way to generate multiglass state.« less
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []