Multiobjective Optimization of Microchannels with Experimental Convective Heat Transfer Coefficient of Liquid Ammonia

2014 
A multi-objective optimization on a system of microchannels with environmentally friendly liquid ammonia is presented. Further, comparative studies were done on two approaches of obtaining the convective heat transfer coefficient necessary for the procedure; from the conventional Nusselt number correlation and that from experimentally measured data. The thermohydrodynamic performance of the coolant agrees well with theory with a higher resistance associated with the experimentally obtained data due to overall contributions from experimental apparatus generally not considered in mathematical representations of actual processes. The study shows that the pairing of a fast and simple evolutionary algorithm method as MOGA with experimental data is a powerful combination when new coolants are being explored for replacements in current systems. The results would be useful in providing the trends and patterns needed to evaluate the potentials of new coolants in microchannels.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    2
    Citations
    NaN
    KQI
    []