Ultrafast renormalization of the onsite Coulomb repulsion in a cuprate superconductor

2021 
Ultrafast lasers are an increasingly important tool to control and stabilize emergent phases in quantum materials. Among a variety of possible excitation protocols, a particularly intriguing route is the direct light-engineering of microscopic electronic parameters, such as the electron hopping and the local Coulomb repulsion (Hubbard $U$). In this work, we use time-resolved x-ray absorption spectroscopy to demonstrate the light-induced renormalization of the Hubbard $U$ in a cuprate superconductor, La$_{1.905}$Ba$_{0.095}$CuO$_4$. We show that intense femtosecond laser pulses induce a substantial redshift of the upper Hubbard band, while leaving the Zhang-Rice singlet energy unaffected. By comparing the experimental data to time-dependent spectra of single- and three-band Hubbard models, we assign this effect to a $\sim140$ meV reduction of the onsite Coulomb repulsion on the copper sites. Our demonstration of a dynamical Hubbard $U$ renormalization in a copper oxide paves the way to a novel strategy for the manipulation of superconductivity, magnetism, as well as to the realization of other long-range-ordered phases in light-driven quantum materials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    92
    References
    0
    Citations
    NaN
    KQI
    []