Integrating CVH and LVH metrics into an optimization strategy for the selection of Iris collimator for Cyberknife Xsight lung tracking treatment

2021 
Purpose We conducted this study to construct a target coverage-volume histogram (CVH) and leakage-volume histogram (LVH) metrics and optimization strategy for the selection of the Iris collimator in Cyberknife Xsight lung tracking treatment through a retrospective analysis of target structures and clinical data. Methods and materials CVH and LVH metrics were retrospectively analyzed for 37 lung cancer patients. CVH and LVH were the same as dose-volume histogram (DVH), but with a coverage and leakage replacing dose. For each patient, Iris collimator was optimized and selected based on CVH and LVH metrics. The CVH and LVH metrics were then compared to ascertain differences in 95% (C95) or 90% (C90) of the target coverage thresholds. The planning target volume (PTV) C95 and C90 coverage, absolute mean leakage value, leakage/coverage ratio, selected collimator diameter (Φ), Φ/length of the long axis of PTV (Amax ), and Φ/length of the short axis (Amin ) of PTV were compared. The correlation of the absolute mean leakage value, leakage/coverage ratio, Φ/Amin and Φ/Amax were evaluated. Results For each patient, the PTV C95 coverage (70.45 vs 63.19) and C90 coverage (77.25 vs 69.96) were higher in the C95 coverage threshold group compared to the C90 coverage threshold group. The leakage/coverage ratio (0.56 vs 0.69) and absolute mean leakage value (0.56 vs 0.61) were lower in C90 coverage threshold group than in C95 coverage threshold group. The Spearmen correlation test showed the Φ/Amin were significantly correlated with leakage/coverage ratio and absolute mean leakage value. Upon analysis of the selected collimator diameters, the mean value of Φ/Amin of the optimized collimator diameters was found to be 1.10. Conclusion The CVH and LVH analysis is able to quantitatively evaluate the tradeoff between target coverage and normal tissue sparing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    0
    Citations
    NaN
    KQI
    []