Prediction of soil effects on GPR signatures

2004 
In previous work we have shown that GPR signatures are affected by soil texture and soil water content. In this contribution we will use a three dimensional electromagnetic model and a hydrological soil model to explore in more detail the relationships between GPR signatures, soil physical conditions and GPR detection performance. First, we will use the HYDRUS2D hydrological model to calculate a soil water content distribution around a land-mine. This model has been verified against measured soil water distributions in previous work. Next, we will use existing pedotransfer functions (e.g. Topp, Peplinski, Dobson, Ulaby) to convert the predicted soil water contents around the land-mines as well as known soil textures and bulk densities into soil parameters relevant to the electromagnetic behaviour of the soil medium. This will enable a mapping between the hydrological model and the electromagnetic GPR model. Using existing and new laboratory and field measurements from the land-mine test facilities at TNO-FEL we will make a first attempt to verify our modelling approach for the prediction of GPR signatures in field soils. Finally a detection algorithm is used to evaluate the GPR detection performance with respect to changing environmental soil conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    12
    Citations
    NaN
    KQI
    []