Unilateral electrical stimulation of rat locus coeruleus elicits bilateral response of norepinephrine neurons and sustained activation of medial prefrontal cortex.

2014 
The brain stem nucleus locus coeruleus (LC) is thought to modulate cortical excitability by norepinephrine (NE) release in LC forebrain targets. The effects of LC burst discharge, typically evoked by a strong excitatory input, on cortical ongoing activity are poorly understood. To address this question, we combined direct electrical stimulation of LC (LC-DES) with extracellular recording in LC and medial prefrontal cortex (mPFC), an important cortical target of LC. LC-DES consisting of single pulses (0.1–0.5 ms, 0.01–0.05 mA) or pulse trains (20–50 Hz, 50–200 ms) evoked short-latency excitatory and inhibitory LC responses bilaterally as well as a delayed rebound excitation occurring ∼100 ms after stimulation offset. The pulse trains, but not single pulses, reliably elicited mPFC activity change, which was proportional to the stimulation strength. The firing rate of ∼50% of mPFC units was significantly modulated by the strongest LC-DES. Responses of mPFC putative pyramidal neurons included fast (∼100 ms), ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    86
    References
    52
    Citations
    NaN
    KQI
    []