MicroRNA-503 contributes to podocyte injury via targeting E2F3 in diabetic nephropathy: ZHA et al.

2019 
Diabetic nephropathy (DN) is serious diabetic complication with capillary injury. Podocyte injury exerts a crucial effect on DN pathogenesis. MicroRNA-503 (miR-503) has been reported in various diseases including DN. Here, we investigated the detailed mechanism of miR-503 in the podocyte injury of DN. The functional role of miR-503 was investigated in cultured podocytes and diabetic rats. Podocyte injury was evaluated by migration and apoptosis experiments in podocytes and we observed that high glucose elevated miR-503 in a time and dose-dependent manner. Meanwhile, E2F transcription factor 3 (E2F3), as a crucial regulator in multiple diseases, was predicted as a potential target of miR-503 here. It was shown that E2F3 was greatly decreased in podocytes incubated with high glucose and miR-503 modulated its expression negatively. In addition, downregulation of E2F3 contributed to podocyte injury, which was reversed by miR-503 inhibitors in vitro. Furthermore, we proved that increase of miR-503 resulted in an unfavorable renal function in diabetic rats via targeting E2F3. These revealed for the first time that the overexpression of miR-503 promoted podocyte injury via targeting E2F3 in diabetic nephropathy and miR-503/E2F3 axis might represent a pathological mechanism of diabetic nephropathy progression.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    15
    Citations
    NaN
    KQI
    []