Dense upflow fluidized bed (DUFB) solar receivers of high aspect ratio: Different fluidization modes through inserting bubble rupture promoters

2021 
Abstract A fluidized bed of Geldart-A particles is promoted as heat transfer fluid in the tubular solar receivers of solar towers. A pressure-driven upward particle flow affects the hydrodynamic flow structure and properties of the fluidized bed. Experiments involved a tube of 0.05 m internal diameter but of very high height/diameter ratio (>120), representative of the future solar receiver and of numerous chemical reactors. Solid circulation fluxes and aeration velocities were varied. Configurations of a bare tube and a tube with bubble rupture promoters were compared. In the bare tube, freely bubbling is transformed into axi-symmetric slugging at a bed level of ∼1 m. With bubble rupture promoters, freely bubbling prevails to about a bed level of 3m, and a turbulent fluidization mode develops higher up the tube (a more chaotic two-phase system with elongated and unstable “gas voids” and “dense solid clusters”), without axi-symmetric slugging detected. Experimental results for both tube configurations were assessed and compared with CFD predictions by the Euler n-fluid code, NEPTUNE_CFD. A good agreement of bed properties was obtained for slug/void frequencies and solids volume fraction in both tube configurations. BRPs moreover enhance the bubble through flow of the fluidizing gas, thus limiting the visible bubble flow rate and bubble sizes while increasing the gas/particle contact, and hence important in designing multi-tube chemical reactors. Whereas slugging limits the heat transfer from the tube wall to the suspension at ∼200 W/m2K, the presence of BRPs maintains a heat transfer coefficient in excess of 600 W/m2K.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    93
    References
    5
    Citations
    NaN
    KQI
    []