Surface Modified Multifaceted Nanocarriers for Oral Non-Conventional Cancer Therapy; Synthesis and Evaluation

2021 
Abstract Inflammatory cells orchestrate tumor niche for the proliferating neoplastic cells, leading to neoangiogenesis, lymphangiogenesis, tumor growth and metastasis. Emergence of severe side effects, multiple drug resistance and associated high cost has rendered conventional chemotherapy less effectual. The aim was to develop a multipurpose, less toxic, more potent and cheaper, oral non-conventional anticancer therapeutic. Cyclooxygenase associated with tumor niche inflammation and proliferative neoplastic cells were targeted synergistically, through anti-inflammatory and anti-proliferative effects of model drug, diclofenac sodium and fluorescent silver nanoparticles (AgNPs), respectively. Drug conjugated AgNPs were surface modified with PVA (for controlling particle size, preferred cellular uptake, evading opsonization and improved dispersion). XRD, FTIR, DSC, TGA, LIBS, particle size and surface plasmon resonance analysis confirmed the efficient drug conjugation and PVA coating with 65 % loading efficiency. In-vitro, the formulation exhibited 1st order release kinetics with sustained and maximal release at slightly acidic conditions (pH 4.5) enabling the potential for passive tumor targeting. Also, nanoparticles showed efficient protein denaturation inhibition potential, hemo-compatibility (
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    111
    References
    3
    Citations
    NaN
    KQI
    []