Quantitative analysis of free fatty acids in rat plasma using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with meso-tetrakis porphyrin as matrix

2006 
Abstract Quantitative analysis of free fatty acids was achieved using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI–TOF MS) with a meso -tetrakis porphyrin matrix. Cesium acetate was employed as a cationizing agent. The MALDI signal was reproducible and dominated by cesiated cesium carboxylates [RCOOCs + Cs] + . The addition of two Cs ions resulted in a mass shift of 264.8 Da for each fatty acid and greatly reduced background peaks. A linear relationship between fatty acid concentration and corresponding fatty acid to internal standard peak intensity ratio was observed for three representative fatty acids analyzed across a concentration range from 4.40 to 150 μM, with correlation coefficients between 0.986 and 0.987. The application of this method was demonstrated with the analysis of free fatty acids in nonfasted and fasted rat plasmas. A total of eight free fatty acids (14:0, 16:0, 16:1, 17:0, 18:0, 18:1, 18:2, and 20:4) were detected. The relative peak height ratios of the fatty acids to the internal standard allow quantitative measurements of the free fatty acids. It was shown that the levels of free fatty acids were higher in fasted rats than in rats in a nonfasted state. This method is simple, sensitive, and fast. Thus, it provides an appealing tool for the analysis of free fatty acids or other low-molecular weight compounds during drug discovery and/or development.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    30
    Citations
    NaN
    KQI
    []