Influence of the Cation on the Surface Electronic Band Structure and Magnetic Properties of Mn:ZnS and Mn:CdS Quantum Dot Thin Films

2019 
The effects of doping Mn into ZnS and CdS quantum dots are reported. Scanning tunneling spectroscopy spectra show a reduction in the electronic band gap in both CdS and ZnS upon incorporation of the Mn dopant. Mn:ZnS exhibits a rigid band shift toward higher bias which is reminiscent of a hole doping effect. This rigid band shift in Mn:ZnS is argued, with the help of X-ray photoelectron spectroscopy, to be due to a hole-doping mechanism caused by the favorable formation of Zn vacancies and a reduction in S vacancies compared to undoped ZnS films. In CdS no rigid band shift is observed even though the presence of Cd vacancies can be confirmed by photoemission and magnetic measurements. A strong sp-d hybridization is observed in the Mn:CdS film upon introducing the Mn dopant. d0 ferromagnetism is observed in both undoped ZnS and CdS quantum dot thin films at room temperature. Upon doping of Mn into ZnS the magnetization is reduced suggesting an antiparallel alignment of Mn-Mn or Mn-Zn vacancies nearest neig...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    72
    References
    6
    Citations
    NaN
    KQI
    []