Geometric and Electronic Structure Analysis of the Three-Membered Electron-Transfer Series [(μ-CNR)2[CpCo]2]n (n = 0, 1–, 2−) and Its Relevance to the Classical Bridging-Carbonyl System

2017 
The dimeric bridging carbonyl complexes [(μ-CO)2[CpCo]2]n (n = 0, 1−) have occupied a central position in the understanding of metal–metal bonding interactions when bridging ligands are present. Based on simple electron-counting formalisms, these dimers have been proposed to possess formal Co–Co bond orders of 2 and 1.5, respectively. However, this simple bonding scheme has been contrasted by molecular orbital theory considerations, as well as spectroscopic data that probes M–M bonding interactions generally. While this system has received considerable attention, there has been a long-standing synthetic limitation in that the doubly reduced dianionic dimer, [(μ-CO)2[CpCo]2]2–, has not been amenable to isolation, thereby precluding an analysis of ostensible full-integer reduction in a homologous series. Accordingly, herein is presented the synthesis of a homologous, three-membered series of bridging-isocyanide [(μ-CNAr)2[CpCo]2]n dimers, including the dianionic member. Structural and spectroscopic analyses...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    112
    References
    4
    Citations
    NaN
    KQI
    []