Non-landing hairs in Sierpinski curve Julia sets of transcendental entire maps

2011 
We consider the family of transcendental entire maps given by $f_a(z)=a(z-(1-a))\exp(z+a)$ where $a$ is a complex parameter. Every map has a superattracting fixed point at $z=-a$ and an asymptotic value at $z=0$. For $a>1$ the Julia set of $f_a$ is known to be homeomorphic to the Sierpi\'nski universal curve, thus containing embedded copies of any one-dimensional plane continuum. In this paper we study subcontinua of the Julia set that can be defined in a combinatorial manner. In particular, we show the existence of non-landing hairs with prescribed combinatorics embedded in the Julia set for all parameters $a\geq 3$. We also study the relation between non-landing hairs and the immediate basin of attraction of $z=-a$. Even as each non-landing hair accumulates onto the boundary of the immediate basin at a single point, its closure, nonetheless, becomes an indecomposable subcontinuum of the Julia set.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    3
    Citations
    NaN
    KQI
    []