Precise localizations of voltage-gated sodium and potassium channels in neurons

2018 
Neurons are extremely large and complex cells, and they regulate membrane potentials in multiple subcellular compartments using a variety of ion channels. Voltage-gated sodium (Nav) and potassium (Kv) channels are crucial in regulating neuronal membrane excitability owing to their diversity in subtypes, biophysical properties, and localizations. In particular, specific localizations of Nav and Kv channels in specific membrane compartments are essential to achieve a precise control of local membrane excitability. Recent advancement in super-resolution microscopy further substantiated nanoscale localizations of different ion channels in neuronal membranes. New questions arise from these new lines of evidence regarding how Nav and Kv channels are trafficked to a specific location and maintained against lateral diffusion. In this review, the aim is to summarize current information about ion channel localizations at nanoscopic levels and discuss what we can infer regarding the mechanisms. © 2017 Wiley Periodicals, Inc. Develop Neurobiol, 2017
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    103
    References
    7
    Citations
    NaN
    KQI
    []