Combined influence of the impurities and radial electric field on dielectric barrier discharges in atmospheric helium

2017 
The combined influence of nitrogen impurities and radial electric field on dielectric barrier discharges in atmospheric helium is investigated using a two-dimensional (2D) fluid simulation. Discharge current waveforms, 2D electron densities, distributions of surface charge, and radial and axial components of the electric field at the electrode edge are calculated for different impurity levels varying from 0 to 30 ppm. It is observed that the discharge presents the characteristic of a column in pure helium, and it gradually becomes a relatively uniform glow discharge as the impurity level is increased to 20 ppm; for the higher impurity level of 30 ppm, the discharge adopts a concentric-ring pattern discharge. Our result shows that the radial electric field at the electrode edge is approximately 0.6–1.2 kV/cm during the discharge. This radial electric field has an effect that leads to a non-uniform discharge. After doping a low level of impurities, the Penning ionizations caused by the impurities can inhibi...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    10
    Citations
    NaN
    KQI
    []