Long-term in vivo corrosion behavior, biocompatibility and bioresorption mechanism of a bioresorbable nitrided iron scaffold

2017 
Abstract Pure iron as a potential bioresorbable material for bioresorbable coronary scaffold has major disadvantages of slow corrosion and bioresorption. However, so far, there are neither quantitative data of long-term in vivo corrosion nor direct experimental evidence for bioresorption of pure iron and its alloys, which are fundamental and vital for developing novel Fe-based alloys overcoming the intrinsic drawbacks of pure iron. This work systemically investigated scaffold performance, long-term in vivo corrosion behavior and biocompatibility of a nitrided iron coronary scaffold and explored its bioresorption mechanism. It was found that the 70 μm Fe-based scaffold was superior to a state of the art Co-Cr alloy stent (Xience Prime™) in terms of crossing profile, recoil and radial strength. Mass loss was 76.0 ± 8.5 wt% for the nitrided iron scaffold and 44.2 ± 11.4 wt% for the pure iron scaffold after 36 months implantation in rabbit abdominal aorta (p  Statement of Significance Pure iron as a potential bioresorbable material has major disadvantages of slow corrosion and bioresorption. However, so far, there are neither quantitative data of long-term in vivo corrosion nor direct experimental evidence for bioresorption of pure iron and its alloys. Only this work systemically investigated long-term in vivo corrosion behavior and biocompatibility of a nitrided iron coronary scaffold up to 53 months after implantation and explored its bioresorption mechanism. These are fundamental and vital for developing novel Fe-based alloys overcoming the intrinsic drawbacks of pure iron. Novel testing and section-preparing methods were also provided in this work to facilitate future research and development of novel Fe-based alloy scaffolds.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    63
    Citations
    NaN
    KQI
    []