A novel method for the injection and manipulation of magnetic charge states in nanostructures

2016 
Realising the promise of next-generation magnetic nanotechnologies is contingent on the development of novel methods for controlling magnetic states at the nanoscale. There is currently demand for simple and flexible techniques to access exotic magnetisation states without convoluted fabrication and application processes. 360 degree domain walls (metastable twists in magnetisation separating two domains with parallel magnetisation) are one such state, which is currently of great interest in data storage and magnonics. Here, we demonstrate a straightforward and powerful process whereby a moving magnetic charge, provided experimentally by a magnetic force microscope tip, can write and manipulate magnetic charge states in ferromagnetic nanowires. The method is applicable to a wide range of nanowire architectures with considerable benefits over existing techniques. We confirm the method's efficacy via the injection and spatial manipulation of 360 degree domain walls in Py and Co nanowires. Experimental results are supported by micromagnetic simulations of the tip-nanowire interaction.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    0
    Citations
    NaN
    KQI
    []