Ricci flow starting from an embedded closed convex surface in $\mathbb{R}^3$.

2021 
In this paper, we establish the existence and uniqueness of Ricci flow that admits an embedded closed convex surface in $\mathbb{R}^3$ as metric initial condition. The main point is a family of smooth Ricci flows starting from smooth convex surfaces whose metrics converge uniformly to the metric of the initial surface in intrinsic sense.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    0
    Citations
    NaN
    KQI
    []