New approach to ECE measurements based on Hilbert-transform spectral analysis

2015 
Spectroscopy of Electron Cyclotron Emission (ECE) has been established as adequate diagnostic technique for fusion research machines. Among various instruments for ECE diagnostics, only Fourier-transform spectrometers with Martin-Puplett interferometers can measure electron cyclotron radiation in a broadband frequency range from 70 to 1000 GHz. Before these measurements, a complete system including a frontend radiation collector, a transmission line, an interferometer and a radiation detector should be absolutely calibrated. A hot/cold calibration source and data-averaging technique are used to calibrate the total ECE diagnostic system. It takes long time to calibrate the ECE system because of the low power level of the calibration source and high values of the noise equivalent power (NEP) of the detection system. A new technique, Hilbert-transform spectral analysis, is proposed for the ITER plasma ECE spectral measurements. An operation principle, characteristics and advantages of the corresponding Hilbert-transform spectrum analyser (HTSA) based on a high-Tc Josephson detector are discussed. Due to lower NEP-values of the Josephson detector, this spectrum analyser might demonstrate shorter calibration times than that for the Martin-Puplett interferometer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    1
    Citations
    NaN
    KQI
    []