Investigations of Hydrodynamics and Heat Transfers in a Modified Reactor Using Fluid Mixers

2013 
The performance of a packed-bed reactor typically used in Gas-to-Liquid (GTL) or Biomass-to-Liquid (BTL) technologies in producing liquid fuels was affected by unfavorable high pressure drop, flow and temperature maldistributions which in turn could cause severe catalyst deactivation, and result in inefficient reaction etc. A certain types of fluid mixers such as KenicsTM or Mixing & Stirring type static mixers had been suggested to improve the performance of this type of reactor. In order to design a proper modified reactor by mean of an installation of such mixing structures for the pilot plant in liquid fuel production via Fischer-Tropsch Synthesis (FTS) conducted at the RCC research center, this study had to characterize the hydrodynamics and heat transfers within a packed-bed modified by KenicsTM and Mixing & Stirring type static mixers. During the FTS, the syngas i.e. CO and H2 was fed through the bed of catalyst causing the temperature rise due to an exothermic enthalpy, and the flow and temperature distributions of mixed gas within the catalyst bed were influenced. The improved velocity and temperature distributions and heat transfers were exhibited by using such mixers e.g. rather uniform distributions and higher heat transfer coefficient. Thus, the better performance of the reactor could be expected.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    0
    Citations
    NaN
    KQI
    []