IN SILICO AND IN VITRO ASSAY OF HGV ANALOGUE AS ANTIBACTERIAL
2019
Objective: The objective of this research was to design a new analogue compound, hexagamavunon (HGV).
Methods: New design of analogue compound, HGV, was performed by QSAR study using BuildQSAR program. In this QSAR study, parameterized model (PM3) method using the Polak-Ribiere algorithm was applied to calculate the optimal geometric structures of the used compounds. The new analogue compound, HGV had been synthesized using aldol condensation reaction. The assay of antibacterial activities was performed using the dilution method. Molecular operating environment (MOE) program was used for protocol docking.
Results: The results of QSAR study reveal the good relationship of antibacterial activities. The in vitro antibacterial activities of 2,6-bis((E)-3,5-dibromo-4-hydroxybenzylidene) cyclohexan-1-one (A113) indicates the good potential to against S. aureus, B. subtilis and E. coli with IC50 27.3 μg/ml, 30.9 μg/ml, 32 μg/ml respectively. This is in accordance with the in silico evaluation showing that 2,6-bis((E)-3,5-dibromo-4-hydroxybenzylidene) cyclohexan-1-one has lower docking score than both amoxicillin and cefoxitin do as the native ligand of receptor 3MZE.
Conclusion: Based on in silico and in vitro assay, 2,6-bis((E)-3,5-dibromo-4-hydroxybenzylidene) cyclohexan-1-one (A113) has good antibacterial activities against S. aureus, B. subtilis, and E. coli.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
18
References
1
Citations
NaN
KQI