Radiation damage effects on helium diffusion in zircon
2021
We report the effects of radiation damage on helium diffusion in zircon using data from molecular dynamics simulations. We observe an increase in activation energy for helium diffusion as a result of radiation damage and increasing structural disorder. The activation energy in a heavily damaged region is smaller than in a completely amorphous system which is correlated with remaining order in the cation sublattices of the damaged structure not present in the fully amorphized system. The increase in activation energy is related to the disappearance of fast diffusion pathways that are present in the crystal. Consistent with the change in activation energy, we observe the accumulation of helium atoms in the damaged structure and discuss the implications of this effect for the formation of helium bubbles and zircon’s performance as an encapsulation material for nuclear waste.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
33
References
0
Citations
NaN
KQI