Glutamate induces focal adhesion kinase tyrosine phosphorylation and actin rearrangement in heterologous mGluR1-expressing CHO cells via calcium/calmodulin signaling

2001 
Group 1 metabotropic glutamate receptors (mGluR1 and mGluR5) stimulate phospholipase C (PLC) and lead to mobilization of intracellular Ca2+ and activation of protein kinase C (PKC). In this investigation, using heterologous receptor-expressing Chinese hamster ovary (CHO) cells, we showed that stimulation of mGluR1 or mGluR5 with glutamate rapidly increases tyrosine phosphorylation of focal adhesion kinase (FAK) (maximum at 1–3 min) in a dose-dependent manner (half-maximal responses at approximately 2 µm). In mGluR1-expressing cells, the glutamate-induced increase of FAK tyrosine phosphorylation was blocked by not only the PLC inhibitor, U73122, but also depletion of intracellular Ca2+ and effectively abrogated by calmodulin (CaM) inhibitors, calmidazolium and fluphenazine. However, neither the PKC inhibitor, GF109203X, nor the CaM kinase II inhibitor, KN-62, inhibited glutamate-stimulated FAK tyrosine phosphorylation. Stimulation of mGluR1 caused a marked increase in actin stress fiber formation. Importantly, this actin rearrangement was prevented by the CaM inhibitor, but not by the PKC inhibitor and is thus in a good agreement with the signaling cascade of the mGluR1-FAK pathway. These results suggest that the Ca2+/CaM signaling and its downstream FAK tyrosine phosphorylation play an important role in cellular function of mGluR1.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    16
    Citations
    NaN
    KQI
    []