Bio-Template Mediated In Situ Phosphate Transfer to Hierarchically Porous TiO2 with Localized Phosphate Distribution and Enhanced Photoactivities

2014 
A localized phosphate distribution (LPD) was introduced for the first time into a porous TiO2 nanostructure by using a biotemplate synthetic strategy, that is, Staphylococcus aureus (S. aureus)-assisted in situ phosphate transfer. The resulting novel nanostructures have shown remarkable enhancement of photoactivities for both selective dye degradation and photoelectrochemical water reduction. Mechanistic understanding reveals that improved separation, directional transport, and less limited interface transfer of the photogenerated electron and hole may be achieved simultaneously within the LPD-modified TiO2 nanostructures because of the existence of the confined negative surface electrostatic field (NSEF) and the spatially oriented upward band bending (UBB). On the contrary, a homogeneous phosphate distribution (HPD) will greatly increase electron interface transfer resistance, which will cause the increase of recombination in bulk. The most important inspiration we can obtain herein is that a comprehensi...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    11
    Citations
    NaN
    KQI
    []